3.3.42 \(\int \frac {1}{(e \cos (c+d x))^{7/2} (a+a \sin (c+d x))} \, dx\) [242]

3.3.42.1 Optimal result
3.3.42.2 Mathematica [C] (verified)
3.3.42.3 Rubi [A] (verified)
3.3.42.4 Maple [B] (verified)
3.3.42.5 Fricas [C] (verification not implemented)
3.3.42.6 Sympy [F(-1)]
3.3.42.7 Maxima [F]
3.3.42.8 Giac [F]
3.3.42.9 Mupad [F(-1)]

3.3.42.1 Optimal result

Integrand size = 25, antiderivative size = 143 \[ \int \frac {1}{(e \cos (c+d x))^{7/2} (a+a \sin (c+d x))} \, dx=-\frac {14 \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 a d e^4 \sqrt {\cos (c+d x)}}+\frac {14 \sin (c+d x)}{45 a d e (e \cos (c+d x))^{5/2}}+\frac {14 \sin (c+d x)}{15 a d e^3 \sqrt {e \cos (c+d x)}}-\frac {2}{9 d e (e \cos (c+d x))^{5/2} (a+a \sin (c+d x))} \]

output
14/45*sin(d*x+c)/a/d/e/(e*cos(d*x+c))^(5/2)-2/9/d/e/(e*cos(d*x+c))^(5/2)/( 
a+a*sin(d*x+c))+14/15*sin(d*x+c)/a/d/e^3/(e*cos(d*x+c))^(1/2)-14/15*(cos(1 
/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^( 
1/2))*(e*cos(d*x+c))^(1/2)/a/d/e^4/cos(d*x+c)^(1/2)
 
3.3.42.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.05 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.46 \[ \int \frac {1}{(e \cos (c+d x))^{7/2} (a+a \sin (c+d x))} \, dx=\frac {\operatorname {Hypergeometric2F1}\left (-\frac {5}{4},\frac {13}{4},-\frac {1}{4},\frac {1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{5/4}}{10 \sqrt [4]{2} a d e (e \cos (c+d x))^{5/2}} \]

input
Integrate[1/((e*Cos[c + d*x])^(7/2)*(a + a*Sin[c + d*x])),x]
 
output
(Hypergeometric2F1[-5/4, 13/4, -1/4, (1 - Sin[c + d*x])/2]*(1 + Sin[c + d* 
x])^(5/4))/(10*2^(1/4)*a*d*e*(e*Cos[c + d*x])^(5/2))
 
3.3.42.3 Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.02, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3162, 3042, 3116, 3042, 3116, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \sin (c+d x)+a) (e \cos (c+d x))^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(a \sin (c+d x)+a) (e \cos (c+d x))^{7/2}}dx\)

\(\Big \downarrow \) 3162

\(\displaystyle \frac {7 \int \frac {1}{(e \cos (c+d x))^{7/2}}dx}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \int \frac {1}{\left (e \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}dx}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {7 \left (\frac {3 \int \frac {1}{(e \cos (c+d x))^{3/2}}dx}{5 e^2}+\frac {2 \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {3 \int \frac {1}{\left (e \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{5 e^2}+\frac {2 \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}-\frac {\int \sqrt {e \cos (c+d x)}dx}{e^2}\right )}{5 e^2}+\frac {2 \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}-\frac {\int \sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{e^2}\right )}{5 e^2}+\frac {2 \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}-\frac {\sqrt {e \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{e^2 \sqrt {\cos (c+d x)}}\right )}{5 e^2}+\frac {2 \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}-\frac {\sqrt {e \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{e^2 \sqrt {\cos (c+d x)}}\right )}{5 e^2}+\frac {2 \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{d e \sqrt {e \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{d e^2 \sqrt {\cos (c+d x)}}\right )}{5 e^2}+\frac {2 \sin (c+d x)}{5 d e (e \cos (c+d x))^{5/2}}\right )}{9 a}-\frac {2}{9 d e (a \sin (c+d x)+a) (e \cos (c+d x))^{5/2}}\)

input
Int[1/((e*Cos[c + d*x])^(7/2)*(a + a*Sin[c + d*x])),x]
 
output
-2/(9*d*e*(e*Cos[c + d*x])^(5/2)*(a + a*Sin[c + d*x])) + (7*((2*Sin[c + d* 
x])/(5*d*e*(e*Cos[c + d*x])^(5/2)) + (3*((-2*Sqrt[e*Cos[c + d*x]]*Elliptic 
E[(c + d*x)/2, 2])/(d*e^2*Sqrt[Cos[c + d*x]]) + (2*Sin[c + d*x])/(d*e*Sqrt 
[e*Cos[c + d*x]])))/(5*e^2)))/(9*a)
 

3.3.42.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3162
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[b*((g*Cos[e + f*x])^(p + 1)/(a*f*g*(p - 1)*(a + b*S 
in[e + f*x]))), x] + Simp[p/(a*(p - 1))   Int[(g*Cos[e + f*x])^p, x], x] /; 
 FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && Intege 
rQ[2*p]
 
3.3.42.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(487\) vs. \(2(151)=302\).

Time = 6.22 (sec) , antiderivative size = 488, normalized size of antiderivative = 3.41

method result size
default \(\frac {\frac {448 \left (\sin ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{15}-\frac {224 E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15}-\frac {896 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15}+\frac {448 E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15}+\frac {2128 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{45}-\frac {112 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\frac {784 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{45}+\frac {112 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15}+\frac {44 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{15}-\frac {14 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{15}-\frac {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )}{9}}{\left (16 \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-32 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) a \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, e^{3} d}\) \(488\)

input
int(1/(e*cos(d*x+c))^(7/2)/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)
 
output
2/45/(16*sin(1/2*d*x+1/2*c)^8-32*sin(1/2*d*x+1/2*c)^6+24*sin(1/2*d*x+1/2*c 
)^4-8*sin(1/2*d*x+1/2*c)^2+1)/a/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^ 
2*e+e)^(1/2)/e^3*(672*sin(1/2*d*x+1/2*c)^10*cos(1/2*d*x+1/2*c)-336*Ellipti 
cE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d 
*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^8-1344*cos(1/2*d*x+1/2*c)*sin(1/2*d* 
x+1/2*c)^8+672*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c) 
^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^6+1064*sin(1/2 
*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-504*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elli 
pticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x 
+1/2*c)^4-392*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+168*(2*sin(1/2*d*x+1 
/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c) 
^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+66*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)- 
21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE 
(cos(1/2*d*x+1/2*c),2^(1/2))-5*sin(1/2*d*x+1/2*c))/d
 
3.3.42.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.48 \[ \int \frac {1}{(e \cos (c+d x))^{7/2} (a+a \sin (c+d x))} \, dx=-\frac {21 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} \sin \left (d x + c\right ) + i \, \sqrt {2} \cos \left (d x + c\right )^{3}\right )} \sqrt {e} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} \sin \left (d x + c\right ) - i \, \sqrt {2} \cos \left (d x + c\right )^{3}\right )} \sqrt {e} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (21 \, \cos \left (d x + c\right )^{4} - 14 \, \cos \left (d x + c\right )^{2} - 7 \, {\left (3 \, \cos \left (d x + c\right )^{2} + 1\right )} \sin \left (d x + c\right ) - 2\right )} \sqrt {e \cos \left (d x + c\right )}}{45 \, {\left (a d e^{4} \cos \left (d x + c\right )^{3} \sin \left (d x + c\right ) + a d e^{4} \cos \left (d x + c\right )^{3}\right )}} \]

input
integrate(1/(e*cos(d*x+c))^(7/2)/(a+a*sin(d*x+c)),x, algorithm="fricas")
 
output
-1/45*(21*(I*sqrt(2)*cos(d*x + c)^3*sin(d*x + c) + I*sqrt(2)*cos(d*x + c)^ 
3)*sqrt(e)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
+ I*sin(d*x + c))) + 21*(-I*sqrt(2)*cos(d*x + c)^3*sin(d*x + c) - I*sqrt(2 
)*cos(d*x + c)^3)*sqrt(e)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0 
, cos(d*x + c) - I*sin(d*x + c))) + 2*(21*cos(d*x + c)^4 - 14*cos(d*x + c) 
^2 - 7*(3*cos(d*x + c)^2 + 1)*sin(d*x + c) - 2)*sqrt(e*cos(d*x + c)))/(a*d 
*e^4*cos(d*x + c)^3*sin(d*x + c) + a*d*e^4*cos(d*x + c)^3)
 
3.3.42.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(e \cos (c+d x))^{7/2} (a+a \sin (c+d x))} \, dx=\text {Timed out} \]

input
integrate(1/(e*cos(d*x+c))**(7/2)/(a+a*sin(d*x+c)),x)
 
output
Timed out
 
3.3.42.7 Maxima [F]

\[ \int \frac {1}{(e \cos (c+d x))^{7/2} (a+a \sin (c+d x))} \, dx=\int { \frac {1}{\left (e \cos \left (d x + c\right )\right )^{\frac {7}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}} \,d x } \]

input
integrate(1/(e*cos(d*x+c))^(7/2)/(a+a*sin(d*x+c)),x, algorithm="maxima")
 
output
integrate(1/((e*cos(d*x + c))^(7/2)*(a*sin(d*x + c) + a)), x)
 
3.3.42.8 Giac [F]

\[ \int \frac {1}{(e \cos (c+d x))^{7/2} (a+a \sin (c+d x))} \, dx=\int { \frac {1}{\left (e \cos \left (d x + c\right )\right )^{\frac {7}{2}} {\left (a \sin \left (d x + c\right ) + a\right )}} \,d x } \]

input
integrate(1/(e*cos(d*x+c))^(7/2)/(a+a*sin(d*x+c)),x, algorithm="giac")
 
output
integrate(1/((e*cos(d*x + c))^(7/2)*(a*sin(d*x + c) + a)), x)
 
3.3.42.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(e \cos (c+d x))^{7/2} (a+a \sin (c+d x))} \, dx=\int \frac {1}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{7/2}\,\left (a+a\,\sin \left (c+d\,x\right )\right )} \,d x \]

input
int(1/((e*cos(c + d*x))^(7/2)*(a + a*sin(c + d*x))),x)
 
output
int(1/((e*cos(c + d*x))^(7/2)*(a + a*sin(c + d*x))), x)